Mortality among Elderly Patients Newly Diagnosed with Acute Lymphoblastic Leukemia (ALL), Using 100% Medicare ALL Data

Shuling Li, PhD, Julia T. Molony, MS, Victoria M. Chia, PhD, MPH, Aaron J. Katz, PharmD, PhD²
Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA; Center for Observational Research, Amgen Inc., Thousand Oaks, CA, USA

Introduction

- ALL is a rare disease. In 2016, it is estimated that 6590 new cases accounted for 0.4% of all new cancer cases in the US.
- The incidence of ALL in adults increases with age; thus, as the general population continues to age, the number of older adults with ALL will also increase.
- Elderly patients with ALL have a markedly poor prognosis that may be attributable to age, higher likelihood of Ph-positive disease, and use of less aggressive therapy.
- Mortality data for elderly ALL patients has been limited by the underrepresentation of elderly ALL patients in clinical trials and the scarcity of large population-based studies.
- Thus, we assessed the risk of death in a population-based cohort of elderly patients diagnosed with ALL in 2008-2011.

Results

Patient Characteristics (Table 1)

- The cohort included 1843 patients (mean [SD] age: 78.7 [7.8] years; 53% female; 88% white).
- Comorbidity level was low, medium, and high for 52%, 30%, and 18%, respectively.
- Diabetes (31%) was the most common comorbid condition, followed by COPD (21%), CHF (16%), PVD (15%), and renal disease (13%).

Mortality (Table 2, Figures 1 & 2)

- Mean (SD) follow-up: 12.8 (13.1) months
- The unadjusted CP (95% CI; %) of death was 21.5 (19.7-23.5) at 30 days, 57.4 (55.2-59.7) at 1 year, and 72.9 (70.7-75.1) at 3 years.
- The unadjusted CP of death was significantly higher for patients diagnosed at older ages and with greater comorbidity (P < 0.001).

Table 1. Baseline characteristics of elderly patients newly diagnosed with ALL in 2008-2011.

Table 2. Unadjusted cumulative probability of death, overall and by patient characteristics.

		Camatative probability (75% of) or acati						
	N(%) of deaths	30-day	90-day	6-month	1-year	2-year	3-year	P value
Overall	1280(69.5)	21.5(19.7,23.5)	36.4(34.3,38.7)	46.5(44.2,48.8)	57.4(55.2,59.7)	67.9(65.7,70.1)	72.9(70.7,75.1)	
Age at ALL diagnosi	s (years)							<0.001
66-69	141(54.7)	11.6(8.3,16.2)	22.9(18.2,28.5)	30.6(25.4,36.6)	42.3(36.5,48.5)	53.8(47.7,60.2)	57.7(51.4,64.3)	
70-74	249(62.4)	15.5(12.3,19.5)	26.1(22.1,30.7)	36.2(31.7,41.1)	49.0(44.3,54.1)	61.8(56.8,66.7)	66.1(61.0,71.1)	
75-79	235(64.9)	17.7(14.1,22.0)	33.5(28.9,38.6)	42.7(37.8,48.0)	53.4(48.3,58.6)	64.4(59.3,69.5)	67.8(62.6,72.8)	
80-84	276(75.6)	26.1(21.9,31.0)	42.5(37.6,47.7)	54.7(49.6,59.9)	64.2(59.2,69.1)	72.6(67.9,77.2)	79.0(74.3,83.3)	
≥85	379(82.6)	31.6(27.6,36.1)	50.6(46.1,55.3)	60.9(56.5,65.4)	71.1(66.9,75.2)	80.1(76.2,83.8)	86.5(82.7,89.8)	
Sex								0.54
Male	605(69.9)	20.6(18.1,23.5)	37.0(33.9,40.3)	47.5(44.2,50.9)	59.3(56.0,62.6)	68.4(65.2,71.6)	73.0(69.8,76.2)	
Female	675(69.0)	22.3(19.8,25.0)	35.9(33.0,39.0)	45.6(42.6,48.8)	55.8(52.7,58.9)	67.4(64.3,70.4)	72.8(69.7,75.8)	
Race								0.68
White	1113(69.0)	22.1(20.2,24.2)	37.1(34.8,39.6)	47.1(44.7,49.6)	57.8(55.4,60.2)	67.4(65.0,69.7)	72.0(69.6,74.3)	
Non-white	167(72.6)	17.0(12.7,22.6)	31.4(25.9,37.9)	41.9(35.8,48.6)	54.8(48.4,61.3)	72.2(65.8,78.3)	80.8(74.4,86.5)	
Charlson comorbidity index							<0.001	
0 (low)	656(67.9)	19.6(17.2,22.2)	33.9(31.1,37.0)	43.3(40.3,46.5)	55.1(52.0,58.3)	65.8(62.7,68.9)	71.7(68.5,74.7)	
1-2 (medium)	367(67.3)	22.0(18.8,25.8)	36.4(32.5,40.6)	46.8(42.7,51.1)	55.9(51.8,60.1)	66.2(62.1,70.3)	70.6(66.4,74.6)	
≥3 (high)	257(77.4)	26.2(21.8,31.3)	43.7(38.5,49.2)	55.1(49.9,60.5)	66.6(61.5,71.6)	76.6(71.8,81.1)	80.5(75.6,85.1)	

Cumulative probability (95% CI) of death

Methods

- <u>Data Source</u>: 100% Medicare ALL data, 2007-2012.
- Cohort: Patients aged ≥66 years, newly diagnosed with ALL in 2008-2011, and continuously enrolled in Medicare fee-forservice (FFS) for 12 months before ALL diagnosis date (baseline period).
- ALL diagnosis was defined by ≥1 Part A inpatient (IP)/skilled nursing facility (SNF)/home health agency (HHA)/hospice (HS) or ≥2 Part A outpatient (OP)/Part B (PB) claims on different dates in any 2-month interval carrying an ICD-9 code of ALL (204,0X).
- ALL diagnosis date was defined as the earlier date of the first IP/SNF/HHA/HS claim or the second OP/PB claim carrying an ALL code.
- Follow-up began on ALL diagnosis date and ended at the earliest of death, disenrollment from FFS, 3 years, or December 31, 2012.
- Baseline comorbidity level was defined using Charlson Comorbidity Index.
- Analyses: Unadjusted cumulative probability (CP; 95% CI) of death was estimated using the Kaplan-Meier method with the log-rank test used to compare the CP of death by patient characteristics.

Discussion

- We observed high 30-day mortality among elderly patients diagnosed with ALL that clearly highlights the unmet medical need in this patient population.
- Unadjusted analyses demonstrate that the risk of death significantly increased with advancing age and comorbidity level.
- Patients aged 85 years or older had the highest risk of death, which may have been exacerbated by increased frailty and a decreased likelihood of receiving intensive therapy options.
- Strengths:
 - Large population-based study
- Real-world rates of mortality among older ALL patients.
- Limitations:
 - Identification of patients with ALL was based on diagnosis codes in administrative claims data; the potential for misclassification exists using this methodology.
 - Clinical and biological characteristics of ALL are not available in the Medicare database.
- Future studies that assess the real-world management of ALL in elderly patients will provide additional insight into factors contributing to the high early mortality risk observed in this patient population.

<u>Disclosures</u>: S Li and J Molony report no conflict of interest. V Chia and A Katz are employees and shareholders of Amgen Inc.

funded by a grant from Amgen

www.cdrg.org

